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in a shallow channel 

By C. C. ME1 
Department of Civil Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA 

(Received 7 January 1985) 

It is known from recent experiments that the disturbance due to a slender ship 
advancing in a shallow channel is essentially one-dimensional in the horizontal plane. 
In particular solitons can be radiated upstream in a transient manner. In this note 
we develop a theory for soliton radiation by slender bodies. It is shown that, when 
the ship speed is in the transcritical range, one-dimensional upstream influence can 
occur even when the channel width is nearly of the order of the ship length but much 
greater than the ship beam. The theory is also extended to one or more ships travelling 
in the same channel at near-critical speeds. 

1. Introduction 
According to the classical linearized theory, a slender ship advancing steadily in 

an unbounded sea generates steady waves in its wake. In deep water there are two 
systems of waves : transverse and divergent ; both are prominent only in a wedge-like 
wake of 19.28' half-angle. In  finite depth h, when the Froude number P = U/(gh)k in- 
creases towards 1, the half-angle rises sharply towards 90". If F increases beyond 1, 
the transverse waves disappear and the half angle slowly decreases from 90" (see 
Kostyukov 1958, figure 17, or Wehausen & Laitone 1960). The near critical speed 
( F  = 1)  the steady wave crests are nearly straight and perpendicular to the ship's 
axis. 

It has long been observed experimentally that, in a channel of finite width and 
depth, a steadily advancing ship can radiate waves which propagate faster than the 
ship (Thews & Landweber 1935, 1936; Graff 1962t and Schmidt-Stiebitz 1966t). 
Interest in this type of upstream influence was rekindled recently by the systematic 
experiments of Huang et al. (1982). Much theoretical understanding has been gained 
by the two-dimensional (horizontal and vertical) studies of Wu & Wu (1982). By 
solving the transient Boussinesq equations numerically, they have demonstrated that 
an infinitely long surface-pressure band, advancing normally to its longitudinal axis, 
radiates solitons. This phenomenon is most pronounced when the speed of advance 
is fairly close to the critical speed. Akylas (1984) has shown, also for the same 
two-dimensional problem but for near-critical speeds, that the governing equations 
can be further simplified to an inhomogeneous KdV equation which can be more 
readily integrated numerically. 

Ertekin (1984) and Ertekin, Webster & Wehausen (1984) have reported extensive 
three-dimensional experiments with a slender ship and pointed out the important 
correlation between soliton radiation and the 'blockage coefficient ', which is the ratio 

t These references were pointed out to the author by Prof'essor J. V. Wehausen. 
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of the maximum cross-sectional area of the ship to the cross-sectional area of the 
channel. They have also performed computations similar to those of Wu & Wu for 
the pressure band and for a two-dimensional body towed along the bottom. Why a 
slender ship can generate long-crested solitons in a wide channel remains to  be 
studied, however. Numerical solutions to  transient two-dimensional equations due 
to Green & Nagdi, which resemble those of Boussinesq, are being carried out by 
Ertekin (1985, private communication) for a moving pressure patch of rectangular 
plan form. Since i t  is not a simple matter to  establish the quantitative correspondence 
between a pressure patch and a ship, there is a need for a more analytical theory 
connecting directly the three-dimensional geometry of the ship and the channel to 
the one-dimensional solitons. 

The observation by Ertekin et al. that the tendency of soliton radiation is related 
to the blockage coefficient implies that the finite channel width is an important 
parameter of the problem. Some time ago Mei (1976) developed a nonlinear dispersive 
three-dimensional theory for a slender ship in shallow water. However, he treated only 
a laterally unbounded sea and the steady state. I n  view of the experiments mentioned 
above we need to modify i t  to include time dependence and the effect of finite channel 
width; this is carried out first for a vertical strut of half-beam B and half-length L,  
in $2. Two dimensionless parameters are found to be important : a = (1 - P ) / 2 p 2  and 
/9 = B /  Wp4, where p = h / L  and W = half channel width. When a and /9 are of order 
unity, the motion is found to be horizontally one-dimensional, to  leading order, both 
ahead and behind the strut. Furthermore, the free surface satisfies an inhomogeneous 
KdV equation in which the forcing term is related to  the blockage coefficient B/ W 
through B. Numerical results are then discussed and compared with the experiments 
of Ertekin et al. for much greater p. Reasonable agreement is nevertheless found for 
the upstream phenomenon. The theory is further extended to several ships and sample 
results for two ships in tandem are presented. 

2. Asymptotic equation for one ship in a wide channel 
Let the ship advance at the constant speed U ,  immediately after t* = 0, along the 

centreline of a channel of depth h and half-width W .  Only one half of the channel 
0 < y* < W will be considered. 

I n  the reference frame fixed on the ship the velocity potential $*(x*, y*, z*, t * )  is 
governed by the following equations : 

in the fluid ; 

a$* -= 0 (z* = - h * )  
a%* 

on the free surface; and 

on the sea bottom. To demonstrate the essential features in the far field of a slender 
ship, it is enough to consider a wall-sided ship, i.e. a strut with vertical walls extending 
the entire sea depth. As will be remarked in 32, i t  is always possible to  adjust the 
beam of an equivalent strut so that it has the same blockage coefficient as a slender 
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ship with draught less than the water depth. The boundary condition on the strut is 
then 

Along the channel wall the normal flux must vanish: 

-- ”* - o (y* = W ,  ails*). 
a Y  * 

For ahead of and behind the ship we must have 

g*, V*$*+O (x*+ +a, t < co). 

g*, V*$* = 0 (t* = 0) The initial condition is 

everywhere in the fluid. 
We shall normalize all the variables as follows: 

where A is the typical wave amplitude, yet undefined, L is the half-length, and B 
the half-beam, of the strut. 

(2.10) 
h A 

Let us denote 

p=z9 € = -  h ’  

both of which are assumed to be small. The dimensionless form of (2.1)-(2.5) can now 
be written 

p 2 A ~ + ~ , , = 0  ( - 1  < z < E ( ; ) ,  (2.11) 

where a 2  a 2  A = - + -  

P p 2 5 + J ’ p 2 ( d ~ + J ’ ~ , ) + ~ ~  lu2(9~+9~)+#1=0 ( Z = ~ C ) ,  

ax2 ay2 ’ 

(2.12) 1 

9, = p2JYQ + KZ) + d d x  5, + #y s,, (2 = a, (2.13) 

q5, = 0, (2 = -i), (2.14) 

(2.15) 1 B  B 4 = - - [ P + s $ , ]  Y, on y = - Y .  
y S L  L and 

As usual, the following Taylor expansion is introduced 

9 = $o - 8p2(z + Ado +z P4 ( Z  + AAdo + . . . , (2.16) 

which satisfies (2.11) and (2.14). Keeping terms of order O(E) and O(p2) we get from 

(2.17) 
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a a  
at ax where D is the operator D=-+F- .  

If is eliminated from (2.17) and (2.18) we obtain 

A40-D240-&D(4:x+9:,) -$V.[(D$) v41+p2(~AD24,-~AA40) 

= O(E', ~ p ' ,  p'). (2.19) 

Defining the depth-averaged $ by 

(2.20) 

we find q50 = $++p2A$+O(~,u2, p'), (2.21) 

which is used to  rewrite (2.19) : 

A$-D2$-&D($:+$~)-,V.[(D$)V$]+jp2D2A$ E = O(s2, &p2, p4). (2.22) 

This is the asymptotic equation containing leading-order effects of dispersion and 
nonlinearity. If slat = 0, (2.22) reduces to  Mei (1976, equation 7). 

If we assume that BIL is a t  most of order O ( E ) ,  then to  leading order the boundary 
condition (2.15) on the body is 

(2.23) 

For arbitrary F ,  one must solve numerically the two-dimensional equation (2.22), 
subject to the conditions (2.23), (2.6), (2.7) and (2.8). This is a complicated numerical 
task. 

We shall focus attention on the neighbourhood of the critical speed, as in Mei (1976). 
Since to  leading order (2.22) may be rewritten 

(2.24) (1 --F2)$xx+$y~-($tt+2F$xt) = O(f% p2) ,  

where the right-hand side represents nonlinearity and dispersion, we assume 

1 - F2 = 2ap2, (2.25) 

where a = 0(1), in order that  the linear term 6,. be comparable with the nonlinear 
and dispersive terms. Because soliton radiation must involve nonlinearity and 
dispersion at large time, the term $xt which involves the lowest-order time derivative 
is more important than $,, and can only be of order O(,u2). Thus we let 

7 = pzt. (2.26) 

Without introducing additional restrictions we also set 

E = p2, 

h3 
L2 . 

which defines the amplitude scale 
A = -  

We now renormalize y as follows: 

(2.27) 

(2.28) 

7 
Y=-> rum T o  

(2.29) 
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(2.30) 1 w  
P T o  L '  

with yo = 0(1 ) ,  and 

so that the channel wall is along the line 7 = 1.  With (2.25)-(2.27) and.(2.29), (2.22) 
becomes 

(2.31) 

-- _ -  

_ -  
- -- p2-2m [2a$,, - %L - 39x 9 x x  + ~ X X X X l +  o(P4-4m), 

a 2 3  

aT2 7: 
-- 

while (2.23) becomes 
BW 

Y,=--Y a$ 1 B 
vm T o  L 

_ -  h2 2' 
(2.32) 

As long as 1-m > 0 and BW/h2 < 0(1), $ is independent of 7 to leading order. 
We may choose for example m = f so that 

T 2(1-m)= 1 ,  y=-, 
P%O 

and define an O(  1 )  coethient b by 

BW 7 = bP* 

Now let us expand $ as a power series in p :  

Clearly, 

at order O(1). At the order 001) 

$ = @,+p@,+ ... . 
@o = @,(x, 7 )  

satisfies 

1 
1- - -- {2aux - 224, - 3uux + +uxxx}, 
a w  
a?12 7: 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

where u = Q O X .  (2.40) 

Integrating (2.37) from 7 = 0 to 1 and using (2.38) and (2.39) we obtain an 
inhomogeneous KdV equation : 

-u,+aux-#uux+~xxx = $7: Y, ( -00  < x < 00). (2.41) 

From (2.1 l), the leading-order free-surface height is 

5 = -@o,+o(p). (2.42) 

(2.43) 
B 

/3 = by: = -/p4 = O(1). 
W 

Let 

We finally have an inhomogeneous KdV equation 

c7--5x-K5x-i5xxx = +PYX ( -00 < x < a), (2.44) 

which depends on two parameters : a representing the ratio of detuning to nonlinearity 
or dispersion (cf. (2.25)) and /3 representing the ratio of the blockage coefficient to 
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nonlinearity or dispersion. In (2.41), the function on the right is in the normalized 
horizontal fluid flux due to the change of cross-sectional area of the strut. If the body 
is a ship with a draught smaller than water depth, we need only change Y, to S,, where 
S is the dimensionless cross-sectional area S*/S,,, of the ship, and reinterpret the 
blockage coefficient B / W  as Sm,,/2Wh. This assertion can be more formally 
established by a matched-asymptotics argument. Since we shall not be interested in 
the near field of the ship (y2+z2 = O(Smax)), these details will not be presented here. 

6 = co sech2~(36,)~ ( ~ + C T ) ,  (2.45) 

The homogeneous KdV equation admits the following soliton solution : 

where the phase speed relative to the ship is 

G = +C0+a. (2.46) 

Recall from (2.25) that a > 0 (or < 0) for sub-(or super-)critical speed. Thus for 
the same soliton amplitude 6, C increases as the ship reduces its speed. In particular 
C can be zero if a = -ice or, equivalently, 

k'2 = l + p y o .  (2.47) 

In his two-dimensional problem with a pressure band on the free surface, Akylas 
(1984) obtained an equation similar to (2.44); there Y, is replaced by the first 
derivative of a &function; and /3 is replaced by the total force (i.e. the integral of 
the pressure). Since /3 here is proportional to the blockage coefficient B/  W we see at 
once that the inhomogeneous term, and hence soliton generation, is appreciable only if 
B is not too small (or W not too large). But the condition B /  W = O b 4 )  clearly allows 
the theory to be of practical interest. If all other parameters are the same, increasing 
ship length also strengthens the forcing. 

Equation (2.44) is of course simple to integrate numerically and can exhibit the 
primary physical feature of soliton radiation. 

3. Extensions for several ships in a canal 
Let there be a ship i that is cruising at the speed U +  & to the left along the line 

In the coordinate system moving at  speed U the effective beam of ship i is described 
y* = y:. 

by y* = y: f Bt Y'(z* + V, t * )  (xg < x* < z;*), (3.1) 

where xg and x;* respectively denote the bow and stern of ship i. We assume that the 
relative speed V, is no greater than O(,u(gh)t). The channel walls are along y* = - W 
and y* = W. The assumptions (2.30) and (2.33) are kept, so that the channel width 
is much greater than the characteristic ship length. 

In the normalized variables of (2.9), the exact boundary condition on ship i reads 

B-1[  ( 2) ] B .  -=+"- F I+ -  + E $ ,  YL o n y = y . + L P ( x ) ,  ay L % -  L 

which can be simplified under (2.34) and & / U  < O ( p )  to 

along 7 = 7, f 0 (xb < x < xi),, 

(3.2) 

(3.3) 

where max YZ = 1. It is worth noting that the slightly unequal ship speeds do not 
alter the quasi-steady form of the boundary condition on the ship, to leading order. 
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FIQURE 1.  Evolution of free surface due to one strut. From bow to stern - 1 < 2 < 1, 
p = 10.4, a = 5 (low subcritical speed). (a) T = 1, ( b )  3, ( c )  5. 

The same perturbation procedure then leads to the following inhomogeneous KdV 
equation : 

where 

The forcing term is the sum of forcing terms of individual ships; the lateral positions 
(y2 or q2)  of their centrelines are unimportant. 

4. Numerical results for one ship 
The explicit finite-difference scheme of Johnson (1972) has been employed. In  all 

computations we have taken Ax = 0.1 and AT = 0.0009. 
The measurements reported in Ertekin (1984) and Ertekin et al. (1984) were for 

a .wide range of water depths and channel widths, ship draughts and ship speeds. The 
ship length was kept the same, 2L = 152.4 cm. The ship hull is of the class Series 60, 
Block 80t and the blockage coefficient S,  is defined to be the ratio of the maximum 

t Detailed geometry of this ship form has been standardized by, and is available from, the US 
Society of Naval Architecture and Marine Engineering (SNAME). 

3 F L Y  162 
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FIGURE 2. Evolution of free surface due to one strut, /3 = 10.4, a = 2.5 
(subcritical speed). (a) 7 = 1, ( b )  2, (c) 3. 

cross-sectional area of the ship to the area of the channel 2h W .  To allow comparison 
with theory we simply replace S ,  by our B / W ,  and interpret the rate of beam 
variation as the rate of change of the cross-sectional area. The dimensions in all the 
experiments correspond to  very large @, much beyond the intended realm of our 
theory. 

Two cases with the smallest /3 are nevertheless chosen for comparison with our 
theory. The geometrical parameters are : 

(i) h = 15 cm, W = 244 cm, 2L = 152.4 em, SB = 0.0157, p2 = 0.03875, /3 = 10.4; 
(ii) h = 12.5 em, W = 244 cm, 2L = 152.4 cm, SB = 0.0188, ,u2 = 0.02691, 

/3 = 26.0. 
In  particular the theoretical strut has a half-beam which varies parabolically along 

(4.1) x, 1.e. Y ( z )  = 1-x2. 

Therefore the strut is equivalent to the model ship grossly but not in detail. 
The evolution of the free surface for the case @ = 10.4 is typical. For a very low 

subcritical speed a = 5, figure 1 (u-c), only one small soliton is discernible upstream. 
Along the ship there is a local low water which becomes steady as time passes. I n  
the wake there is a packet of waves oscillating about z = 0. The packet lengthens with 
time and the waves near the ship approach a steady uniform amplitude. For a high 
subcritical speed, a = 2.5, figure 2(a-c), more crests are radiated upstream. They 
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FIQURE 3. Evolution of free surface due to one strut, /9 = 10.4, a = 0 
(critical speed). (a) 7 = 1, ( b )  3, (c) 5. 

march ahead in order of decreasing height. The leading crest becomes a separate 
soliton first, while the trailing crests have a mean sea level slightly above z = 0, 
resembling an undular bore. After a still longer time, the second crest sheds its tail 
and becomes a separate soliton lower than the first. Downstream of the ship, the free 
surface oscillates at large amplitude about the mean sea level z = 0; the envelope also 
lengthens with time. 

Figure 3 (a-c) shows the evolution a t  the critical speed a = 0. High-frequency 
solitons are quick to form at high frequency upstream, and eventually attain the same 
height. There is now a region of low water near and behind the ship followed by a 
packet of waves oscillating about z = 0. The low-water region and the wave packet 
extend with time. 

For a low supercritical speed a = -2.5, figure 4(a-c) ,  the qualitative features 
resemble those of the critical case with a slower rate of radiation but a greater soliton 
amplitude. 

All these features are in qualitative accordance with the records of Ertekin taken 
from gauges fixed along a wave tank. 

For a sufficiently high supercritical speed such as a = -5.0, no solitons are 
radiated, see figure 5(u-c). Near the ship a local steady-state rise is quickly 
established, which corresponds to the solution to (2.44) with I& = 0. A transient wave 
packet is shed in the wake with the usual signs of frequency dispersion. 

3-2 
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FIGURE 4. Evolution of free surface due to one strut, /3 = 10.4, a = -2.5 
(low supercritical speed). (a) 7 = 1, ( b )  3, ( c )  5. 

Figure 6 shows the normalized amplitude of the leading soliton as a function 
of the detuning parameter a for the two cases (i) and (ii). The results are seen to 
compare well with most of the observations of Ertekin et al. Both give the same trend 
of Q increasing with a. For large enough a, solitons are no longer radiated, according 
to our theory; the cutoff values are marked in figure 6. In  the experiments high 
solitons (sometimes with breaking) were still observed. This discrepancy occurs at 
values of a quite beyond the realm of our theory. Equation (2.22), which is less 
restrictive with respect to a, would probably yield better agreement for a wider 
range of a. Note also that this good agreement is for the wave field ahead of the ship 
only. Behind the ship Ertekin’s recorded wave patterns were quite two-dimensional. 
This is probably the result of the relatively large blockage coefficient. A different 
theory based on the fuller equation (2.22) or its equivalent is needed in order to 
reproduce a1 the downstream features in Ertekin’s experiments. For the parameter 
range defined by (2.25) and (2.43), our theory gives one-dimensional waves both ahead 
and behind the ship. 

Since, for a < 0 (F 2 i ) ,  the radiated solitons ultimately approach the same 
amplitude advancing at the same speed, there appears to be an asymptotic steady 
state, in which the distance between two successive solitons can be defined as the 
wavelength of the soliton train. The existence of a constant ‘wavelength ’ is consistent 
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with the known result that two non-overlapping solitons do not interact, within the 
approximation of the KdV equation. Dividing the asymptotic wavelength by the 
soliton phase speed which, in dimensionless form and stationary frame of reference, is 

C 
~ + P u 2 ( K , + 4 9  -- 

(gh)t - 

we can get the asymptotic wave period. For a > 0 (F < 1) the upstream solitons are 
unequal in height; there cannot be a steady-state wavelength or period. Ertekin 
(1984) and Ertekin et al. (1984) have taken the difference in arrival times of the first 
two crests recorded at a fixed station as the measured period of soliton radiation T,. 
For the two cases with which we have compared our theory, these gauges were so 
near (< 20 m) to the bow initially, owing to the limited length of tank, that the 
leading crests in the last record were still not separated (for case (i), see pp. 300-302, 
Ertekin 1984). Therefore, their period of radiation is not related to our steady-state 
period, even after proper transformation of coordinates. Nevertheless, both our 
calculations and their experiments show the qualitative trend of soliton period 
increasing with ship speed, for supercritical speeds. 
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FIGURE 6. Amplitude of leading soliton versus a: -, theory; 0, 0 ,  experiments. 
Vertical dashes mark the cutoff of soliton radiation. 
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FIQURE 7. Evolution of free surface due to two identical ships in tandem. Ships are located in 
-6 < x < -4, 4 < x < 6, /3 = 10, 1/L = (centre-to-centre spacing)/l = 10, a = 2. ( a )  7 = 1, ( b )  2, 
(4 3. 
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FIGURE 8. Evolution of free surface due to two identical ships in tandem, 
B = 10, #?/L = 10, a = 0. (a) 7 = 1, (a) 2, (C) 3. 

5. Sample results for two ships 
As was pointed out in $3, under the stated assumptions the total blockage of the 

ship is the primary parameter. Thus two similar ships moving side by side have the 
same effect as one ship with the length of the larger ship and the width of both. It 
is therefore more interesting to examine two ships in tandem. A comprehensive study 
would be very lengthy since the additional parameters are numerous (length ratio, 
width ratio, ship-to-ship spacing or speed difference). In figures 7-9 we present some 
results only for two identical ships spaced at  5 ship lengths (1OL) from mid-ship to 
mid-ship. The half-beam of each ship is a parabola, the dimensionless length of the 
ships is 2 and the mid-ship sections are at x = + 5 .  Only three speeds are included. 

A t  a subcritical speed, a t  small time large waves are independently generated ahead 
of the two bows. As time progresses solitons are formed ahead of the leading ship; 
between the ships large-amplitude oscillations are trapped. As the speed increases 
past the critical value, upstream solitons become higher. At sufficiently high super- 
critical speed no solitons are generated. 

6. Conclusion 
We have shown in this paper that a slender ship advancing near the critical speed 

in a shallow channel of finite width can radiate upstream solitons with crests 
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10 

X 

FIGURE 9. Evolution of free surface due to two identical ships in 
tandem, j3 = 10, 2 = 10, a = -2. (a )  T = 1, (b)  2, (c) 3. 

transverse to the axis of the ship, and that these solitons are governed to  leading order 
by a one-dimensional inhomogeneous KdV equation. Further study of a ship with 
small draught and beam is of interest to the theory of ship motion, and can be carried 
out by matched asymptotics; this will be reported elsewhere. 

In  other fluid systems where critical speedsexist, such as two-layered or continuously 
stratified fluids, upstream radiation of solitons may also arise when tides pass through 
a canal of varying cross-section, and this is worth investigation. 

This research has been sponsored by the Fluid Mechanics programs of US Office 
of Naval Research (N00014-80-C-0531) and of US National Science Foundation 
(MEA77 17817A04). Computer programs were kindly prepared by Mr. KO-fei Liu. 
Comments by Professor J. V. Wehausen and Dr R. C. Ertekin of an earlier draft have 
been very helpful. 
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